
?

Paramedir: A Tool for Programmable Performance
Analysis

Gabriele Jost", Jesus Labarta' and Judit Gimenez2

'NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 USA
gjost @nas.nasa.gov

*European Center for Parallelism of Barcelona-Technical University of Catalonia (CEPBA-

(jesusjudit} @cepba.upc.es
UPC), cr. Jordi Girona 1-3, Modul D6,08034 - Barcelona, Spain

Abstract. Performance analysis of paallel scientific applications is time con-
suming and requires great expertise in areas such as programming paradigms,
system software, and computer hardware architectures. In this paper we de-
scribe a tool that facilitates the programmability of performance metric calcula-
tions thereby allowing the automation of the analysis and reducing the applica-
tion development time. We demonstrate how the system can be used to capture
knowledge and intuition acquired by advanced parallel programmers in order to
be transferred to novice users.

1 Introduction

Successful performance analysis is one of the great challenges when developing effi-
cient pafallel applications. Meaningful interpretation of a large amount of performance
data requires significant time and effort. A plethora of factors influence the perform-
ance of a parallel application, such as the hardware platform, the system software, and
the programming model. Poor performance will usually be due to an intricate interac-
tion of many components. It is important to be able to distinguish the influence of the
different factors.

A variety of software tools have been developed to assist the programmer in this
task. Performance visualization has been the subject of many previous commercial as
well as research efforts. An example of a commercial product is Vampir [111 which
allows tracing and trace visualization of message passing and OpenMP [7] applica-
tions. Another tool is Paraver [8] which is being developed and maintained at the
European Center for Parallelism of Barcelona-Technical University of Catalonia
(CEPBA-UPC). It supports a variety of programming paradiem and enables the user
to obtain a qualitative global perception of the application behavior as well as detailed
quantitative analysis of program performance.

A The author is an employee of Computer Sciences Corporntion

!

In order to analyze the performance the user will typically inspect timeline views of
processes and threads, calculate performance statistics for parts of the code and try to
identify the problem. There are several research efforts on the way with the goal to
automate this process. The URSA IMINOR project [9] at the Purdue University uses
program analysis information as well as performance trace data in order to guide the
user through the program optimization process. The Paradyn Performance Consultant
[5] automatically searches for a set of performance bottlenecks. The system dynarn-
cally instruments the application in order to collect performance traces. Code instru-
mentation to obtain desired performance metrics can be specified using a Metric De-
scription Language (MDL). The SUIF Explorer [4] Parallelization Guru developed at
Stanford University uses profiling data to bring the user’s attention to the most time
consuming sections of the code. KOJAK [3] is a collaborative project of the Univer-
sity of Tennessee and the Research Centre Juelich for the development of a generic
automatic performance analysis environment for parallel programs aiming at the
automatic detection of performance bottlenecks.

Our approach differs from the previous work in that we are not trying to detect a
set of bottlenecks. We aim at collecting observations about how the interaction of
different aspects of the hardware, system software, and the programming model cause
bad performance. Future analysis results can then be compared against the previously
collected observations in order to draw conclusions. Ths requires a high degree of
flexibility in gathering performance profile information and its meaningful interpreta-
tion. A large part of the conclusions drawn during the performance analysis is based
on visual inspection of the trace. The calculation of performance metrics is often
based on patterns that have been visually detected in the trace file. In order to re-use
experiences gained from a previous analysis, the process needs to be made program-
mable. The tool presented in this paper is based on the Paraver performance analysis
system. It allows the automatic calculation of performance metrics that have been
predefined by expert users based on visual inspection of the trace data.

The rest of the paper is structured as follows: Section 2 gives an overview of the
Paraver performance analysis system. Section 3 describes the extension of Paraver
that provides for the programmability of the performance analysis process. An exam-
ple of an application using the new tool is presented in Section 4. The conclusions are
drawn in Section 5 which also gives an outlook on future work.

2 The Paraver Visualization and Analysis System

This section briefly describes Paraver, which forms the basis of our new tool. Paraver
supports performance analysis of a wide variety of programming paradigms such as
message passing, OpenMP, and hybrid methods.

Paraver provides its own tracing package, OMPItrace [6] with a simple but very
ff exible format. OMPItrace dynamically instruments parallel applications for profiling.
Examples of information dynamically instrumented and traced on our development
platform (SGI Origin 3000) are parallelization library calls, compiler generated rou-
tines containing the body of parallel constructs, and thread state information. User

i

I

f

routines are not automatically traced on the SGI Origin, but OMPItrace provides li-
brary routines for manual source code instrumentation by the user.

The trace collected during the execution of a program contains a wealth of informa-
tion, which as a whole can be overwhelming. The information must be filtered and
interpreted to gain visibility of a critical subset of the data. Paraver provides flexibility
in composing displays of trace data. The user can specify through the Paraver visuali-
zation module views of a trace file or define how to compute a given performance
index from the trace. The types of events to be viewed can be selected via a filter
module. An example is to only display time spent in a special user routine, or only
messages of a given tag or destination. The filtered information is then passed to the
semantic module. Here the user can specify how to interpret the data that is to be visu-
alized. Examples are timeline views to show the particular state that a thread is in,
when parallel functions are being executed by each thread, or what the instruction or
cache miss rates are for a given time interval. In order to obtain quantitative informa-
tion the Paraver analysis module can be used to compute performance metrics from
the records in the trace. Examples of useful statistics are the number of communica-
tion events, the time spent in certain user routines, or the number of cache misses
during the execution of parallel loops for the different threads.

The filter module and the semantic module provide great flexibility for the user to
specify timeline views and the computations of statistics. Their composition will usu-
ally take some time and requires expertise. However, once a useful view or statistic
has been determined, the specifications can be saved to a configuration file and re-
used later on. This feature allows the programmability of performance metric compu-
tations which is essential for the automation of performance analysis. This will be
discussed in the next section.

3 Paramedir

In the previous section we have explained how Paraver provides the flexibility to
compose views of examining performance trace files and to define and calculate per-
formance metrics. By designing re-usable configuration files, know-how can be trans-
ferred from the experienced to the novice user. Nevertheless, the displayed informa-
tion still needs to be visually inspected in order to draw conclusions. At this point we
should mention that the ver in the name Paraver comes from the Spanish verb ver for
ru see.

To assist the experienced programmer in inspecting performance trace data and to
provide means to guide the novice user in drawing conclusions from performance
statistics we have extended the Paraver system by Paramedir (Parallel Medir, where
medir is Spanish for to gauge) a non-graphcal user interface to the analysis module.
Paramedir accepts the same trace and configuration files as Paraver. This way the
same information can be captured in both systems.

The following example of calculating metrics for an OpenMP code demonstrates
the usage of Paramedir. One of the first steps when analyzing the performance of
OpenMP applications is to examine whether the threads are used efficiently. This

means, the user would like to know whether the threads spend their time performing
useful computations of the application code or whether they spend their time in wat-
ing for work, synchronlzing, or in forldjoin overhead. A Paraver timeline displaying
the flow of time spent in useful calculations by each thread is shown in Fig 1 The
time spent running user code is shown in black, while overhead time is colored white

l l l l l l I I I~111111 111 ll I I1

Fig. 1: Timeline view of the flow of useful computations of an application running on
4 tlueads. Useful time is shaded in black. Time spent in synchronization, waiting for
work, or fork/join overhead is shown in white

Visual inspections immediately leads to the conclusion that only the master thread
spends most of its time in useful computations and that the parallel efficiency of the
code is fairly low. A different view of the same application is shown in Fig. 2. Here
the timeline is displayed on a task level. The shadings indicate the time that the appli-
cation spends in different user functions. Both views can be combined to calculate the
average utilization of all threads within thc individual routines (Fig. 3). This is
achieved by computing the sum of the useful time of all threads and dividing it by the

Fig. 2 Paraver time line view on task level The different shadings indicate time
merit in different routines

Fig. 3: A Paraver analysis displaying the calculated parallel efficlency of different
user roulines. Darker shading indicates higher values

possible maximum value, which is the elapsed time multiplied by the number of
threads. The configuration for the calculation of the efficiency metric can be saved to
a configuration file. At this point we need to remark that this metric would indicate,
incorrectly, good efficiency for SPMD style OpenMP programs with large amounts of
replicated work. Many more metrics need to be calculated and compared in order to
draw conclusions about the performance of the applications. The Paramedir command
line tool allows processing a performance trace file together with a previously de-
signed analysis configuration file without invoking a graphical user interface. The
output is an ASCII file containing performance metrics such as those displayed in Fig.
3. The internal structure of Paraver and Paramedir is shown Fig. 4.

Paraver
trace file

Fig. 4: Internal structure of Paraver and Paramedir. The shaded components are used
by Paramedir. Paramedir is a command line tool that takes a performance trace file
and a Paraver analysis configuration file as input. It generates an ASCII table con-
taining the requested performance metrics

4 Application of Paramedir to Automatic Performance Analysis

While Paramedir in itselr is just a tool to the retrieve rnetrics from a performance trace
file in form of numeric values, it can he a very powerful component of a performance

analysis system. This section describes the use of Paraniedir w i t h an expert system
for performance analysis.

4.1 An Expert System for Performance Analysis

The prototype implementation of an expert system for automatic performance analysis
was deveioped to pre-process t ie raw periormance anaiysis information contained in
the trace file with the goal to point the user to code sections that need optimization.
We present a brief overview on the system. Details about the prototype iniplenienta-
tion are described in [2]. It is integrated in a parallel programming environment con-
sisting of tools for automatic parallelization, debugging, and performance analysis.
Besides the performance trace, the system uses program structure information pro-
vided by the automatic parallelization tool. The expert system works with, rather than
repiace either the user or the existing toolset. The user can make use of the expert
system advice, but can also choose to work as hc has done previously. The expert
system approach enables the use of a set of rules which are modular and can be modi-
fied or added incrementally to the system. Complex performance metrics, determined
by a human expert, are automatically computed and processed, automating large parts
of the detailed human driven analysis. The expert system invokes Paramedir to calcu-
late performance metrics and then applies a set of rules to discover performance prob-
lems in important code segments. The user is then pointed to performance problems in
time consuming segments of the code. The output messages contain information about
the discovered symptoms, a diagnosis of the problem, and suggestions for further
actions and possible improvements. The prototype implementation considers a small
number of metrics relevant to OpeniMP parallelization and targets the efficient place-
ment of directives within large scientific applications.

4.2 An Expert System Analysis Example

The goal of the expert system is to assist the user with the analysis of complex scien-
tific applications. The discussion of a full scale application exceeds the scope of this
study and is presented in [2]. For the purpose of this study, we give a brief discussion
of the analysis of the APART Test Suite (ATS) [I] . The suite is designed to test per-
formance analysis tools with respect to their ability and efficiency to detect actual
performance problems. The tests cover such issues as synchronization, load imbal-
ance, and inefficient serialization.

We ran a preliminary version of the OpenMP Fortran 90 implementation of the test
suite on 32 threads on an SCI Origin 3000 located at the NASA Ames Research Cen-
ter. We manually instrumented the relevant routines for profiling. The programming
environment described in 4.1 provides the functionality for automatic instrumentation
of user routines and loops within these routines, but for our study we ran the expert
advisor in stand-alone mode. This implies that no program structure information is
available and the generated diagnostics are based solely on performance metncs.
Hardware counters were not traced in our evaluation profiling run.

I

i

The expert system compares a set of automatically calculated performance metrics
against pre-defined threshold and applies a set of rules. Performance metrics com-
puted by Paramedir for the routines under consideration are:

* *

a

a

Time: The percentage of time spent in instrumented code segments.
Efficiency: The average utilization of all threads is computed as explained in
section 3.
Lnad-halcnosr The coefficient of variation in the fraction of i.Isefi!l time over
all threads is used as an indicator for the load balance within each routine or loop.
Thread-mgmt: The fraction of time that is spent in the fork/join state by the
master thread. It is used as a measure for overhead introduced by thread manage-
ment.
Get-work: The fraction of time that threads spent trying to acquire a chunk of
work.
Sarial: The fraction of tirze where only one threx! is ixaning iiser code within a
parallel region.
Sequential: The fraction of time spent running outside of parallel regions.
None: The fraction of time where no threads are running user code.
Samples of the metrics calculated are shown as histograms in Fig. 5. The squares

represent the performance metrics calculated for the different user routines. The rou-
tines are ordered according to the percentage of the overall execution time they con-
sume, starting with the most time consuming routines. The statistic indicating seriali-
zation within parallel routines clearly identify three routines where a large fraction of

Fig. 5: Histogram of some performance metrics calculated by the expert system. The
squares correspond to routines, ordered by the percentage of the total execution time
they take. Darker shading of a square indicates a higher value of the metric. The first
row and column are placeholders for routine names and task identifiers. The squares
circled with solid lines represent routines with low parallel efficiency and high thread
management overhead. The squares circled with a dashed line show routines with a
large serialized fraction with the parallel constructs

time is spent with only one of the threads running within parallel regions. It turned out
that these were routines containing OMP-MASTER, OIMP-SINGLE, and a large
imbalanced parallel section. They consume less than 1% of the overall execution time
and shall not be discussed any further. Two interesting examples are imbal-
anceqarallel-region and dynamic-schedule-overhead. They show
low efficiency and consume more than 1% of the execution time. Their statistics are
marked by a white solid line in Fig. 5. The analysis of the expert system is shown in
Fig. 6. As mentioned earlier, the output does not contain any suggestions for optimiza-
tion due to a lack of program structure information.

===> Routine imbalanceqarallel-region
* * * * Takes 6.41 8 of the execution time.
* * * * Runs with 2 8 . 0 % efficiency on 32 threads.
* * * * The routine shows high thread management overhead.
_ _ _ _ ---->>> POSSIBLE R.EASON:

>> Routine may contain thread startup time. _ _ _ _ _ _ _ _
* * * *
* * * * The routine contains parallel loops or sections
* * * * that show load imbalance!

>>> FURTHER ACTION:
>>> Hardware counters needed €or further analy-

sis of load imbalance.

_ _ _ - _ - _ _
__-- _ _ _ _

===> Routine dynamic-schedule-overhead

* * * * Takes 1.51 % of the execution time.
* * * * Runs with 0.0 % efficiency on 32 threads.
i * * * The routine shows high thread management overhead

* * * *

>>> POSSIBLE REASON:
>> Routine may use inefficient scheduling.
>>> FURTHER ACTION:
>>> Examine schedule clause on parallel loops.
>>> Consider using STATIC scheduling.

_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _

Fig. 6: Expert system analysis of two routines from the ATS.
~~ ~~

Routine imbalancegarallel-region does expose a load imbalance
withn a parallel region. This problem was intended to occur and it was reported by
the expert system. It is determined by checking the metrics Load-balance and
Sequential. The reason for the imbalance could not be determined. A trace con-
taining hardware counters is requested for further analysis. Surprising was the report
of another performance problem, which is a high thread management overhead. As a
possible reason thread startup time is suggested. This is determined by checking the
metrics Thread-mgmt, None, and Get-work. Examining the state timeline of the
different threads shown in Fig. 7 verifies the reported analysis. Black indicates run-
ning time, white indicates idle time, grey indicates time spent in synchronization and

Fig. 7: Time line view of routine imbalance-inqarallel_region. Black
indicates running time, white indicates idle time, grey indicates time spent in syn-
chronization and fork/join overhead

fork/join overhead. The figure clearly shows the load imbalance during the running
time. It also shows that a significant amount of time passes before all threads are
forked. This is due to the fact that the routine is the first parallel function called within
the benchmark and therefore contains all of the OpenMP startup time to create and

For routize dyrmmic-s chedule-overheat! the expert system detemines a
large thread management overhead. This was also detected for the previous routine,
but now the metric Get-work exceeds the given threshold, which was not the case
for the previous routine. It indicates that a large amount of time is spent by threads
trying to obtain a chunk of work. This triggers the suggestion to try a different sched-
uling strategy. We would like to note that we also discovered unfairness by the
OpenMP runtime when assigning work. For the trace under examination threads 9
through 12 were clearly favored, obtaining an average of 130 chunks of work, while
the average for the others was less than 10 chunks. Some threads spent all of their time
trying to get work but never obtained one. The high amount of thread management
time is therefore in large parts due to the unfairness of the system, not the dynamic
scheduling per se. The suggestion to try a different scheduling strategy is still valid.

. initialize the threads.

5 Conclusions and Future Plans

We have developed a tool that facilitates the programmability of performance metric
calculations thereby allowing the automation of the analysis and reducing the applica-
tion development cycle. We described how the tool can be used to build an expert
system for automatic performance analysis. The system was evaliiated on a benchmark
test suite for automatic performance analysis. Several intended and unintended per-
formance problems were automatically discovered.

The first conclusion we draw is that the great challenge in automatic performance
analysis is to de-convolve the factors that influence the performance of the program in
the right way. An example is that a large amount of work replicated by all threads in
an in SPMD style program can easily be misinterpreted as good efficiency. It shows
than many rnetrics need to be checked in order to be able to distinguish the influence
of hardware, system software, and programming model.

Secondly, we found it to be very important that the graphical user interface based
Paraver system and the command line based Paramedir tool share the same configura-
tion files. This makes i t possible to switch from one tool to the other at any point dur-
ing the analysis process. The automated analysis tising Paramedir rapidly guides the

user to code segments, views, and effects that require further detailed analysis with
Paraver. The detailed analysis will often lead to the design of new analysis configura-
tion files which can then, in turn be included in the automated process.

We will continue to add more metrics and rules to the expert system as they are
discovered, particularly to support message passing and hybrid programming models.
The performance analysis component of the expert system currently runs in stand-
alone mode, producing analysis reports as ASCII files. We also plan to integrate it
more closely with the Paraver system in order to guide the user through the perform-
ance analysis process.

Acknowledgements

This work was supported by NASA contract DTTS59-99-D-O0437/A61812D with
Computer Sciences Corporation/ AMTI, by the Spanish Ministry of Science and
Technology, by the European Union FEDER program under contract TIC2001-0995-
C02-01, and by the European Center for Parallelism of Barcelona (CEPBA). We
would like to thank the members of the European IST working group APART for
making the preliminary version of ATS available to us. In particular we would like to
thank Bemd Mohr from the Research Centre Juelich for his support.

-

References
I

1. M. Gemdt. B. Mohr, and J.L. Larsson Traeff, “Evaluating OpenMP Performance Analysis
Tools with the APART Test Suite”, Fifth European Workshop on OpenMP (EWOMP03),
Aachen, Germany. September 22-26, 2003.
G. Jost, R. Chun, H. Jin, J. Labarta, and J. Gimenez, “An Expert System for the Develop-
ment of Efficient Parallel Code”, Submitted to IPDPS04.
KOJAK Kit for Objective Judgment and Knowledge based Detection of Performance
Bottlenecks, http://www.fz-juelich.de/zam/kojak/.
S. Liao, A. Diwan. R. P. Bosch, A. Ghuloum. M. Lam, ”SUIF Explorer: A n biteractive
a d hterprocedifml Paralieiiier”, 7‘” ACM SIGPLAN Symposium on Principles & Prac-
tice of Parallel Programming, Atlanta, Georgia, (1999), 37-48.
B.P. Miller. M.D. CalIaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K.L. Kara-
vanic, K. Kunchithhapdam and T. Newhall, “The Par-adyn Parallel Perforniance Mens-
urenrent Tools”, E E E Computer 28, 11, pp.37-47 (1995).

OpenMP Fortran/C Application Program Interface, Iitti)://WWW.[)i)ciiinu.o1.0/.

I. Park,‘M. J. Voss, B. Armstrong, R. Eigenmann, “Supporting-Users’ Reasoning in Per-
formance Evaluation and Tuning of Parallel Applications”, Proceedinss of PDCS’2000,
Las Vegas, NV, 2000.

10. TAU: Tuning and Analysis Utilities, Iittr~://~~~t~~~~~.cs.uor.e~on.cdu/reseilr.ch/~aracomdtau.
11. VAMPIR User’s Guide, Pallas GmbH, httn:!/\\.\\:\\:.i)nllas.de.

2.

3.

4.

5.

6. OMPItrace User’s Guide, https:Nwww.cepba.upc.es/paraver/manual_i.htm
7.
8. Paraver, httn://\\~WW.CCi)bil.ui)c.cs/I);iT;1vCr/.
9.

,

